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\“instability at 10.6 x10 to the -6 is easily achieved by photon induced

excitation of the valence electrons to the conduction band through a .
continuous distribution of Shockley surface states. At>1.D6 x¢10 to fh£'16,
the required plasma concentration in case of Germanium and Silicon is produced
by band to band transitions and by Zener tunneling in case of GaAs, v
GaAs(x)P(1-x) and GaP. In practice the damage occurs both at the surface of
the semiconductor and within the bulk, creating defects that cause carrier
removal and mobility degradation. The defects so created are more active at
lower temperatures than at room temperature as seen from the experimentally
measured Hall mobility versus temperature curves before and after laser damage.
Carrier removal and mobility degradation curves appear qualitatively to be
similar to those observed for electron, neutron and r-ray damage. These
changes in electrical properties can be explained by assuming the creation of
localized traps in the band gap and appying the model of James and Lark-
Horovitz. '
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CHAPTER 1

INTRODUCTION

The study of the numerous ways in which radiation and matter
can interact has been a subject of intensive research for several
years. The interaction can be linear or nonlinear depending upon
the properties of matter and radiation. The end result of the
interaction is mechanical or electrical damage to the matter.

There have been numerous studies of radiation induced damage
in semiconductors due to electrons [l, 2, 3], neutrons [4, 5, 6],
deutrons [7, 8, 9], a-particles [10, 11] and y-rays (2, 12]. The
study of radiation induced damage in electrical properties of semi-
conductors is of great importance and is, therefore, a subject of
continuous research in solid state electronics.

The present study of laser induced damage in semiconductors
was undertaken for several important reasons. Unlike the extensive
data available on particle and y-ray damage, a literature survey
shows that only meager and incomplete data exist on laser damage
of semiconductors. Today more and more semiconductor devices are
finding applications in a wide variety of fields such as in laser
systems, laser energy conversion [13], air force weapons, satel-
lites (exposed solar cells), IR controlled weapons, opto-
electronics and micro-optics. Therefore, a knowledge of the be-
havior of the electronic properties of semiconductors under the

effect of laser radiation is essential.

*
Numbers in brackets refer to references at the end of each
chapter. t
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Next, the great structural sensitivity of semiconductors to
radiation makes them very useful systems in which to investigate
the nature of laser damage in solids. The observed laser induced
changes in electrical properties such as carrier mobility, life-
time and concentration can be used to diagnose the damage mechan-
isms that cause catastrophic material failure in optical materials
for high power lasers. For obvious reasons, such techniques can-
not be applied to metals and insulating dielectrics.

The damage to semiconductor materials can occur through a
number of mechanisms. Chapter 2 describes some of the more im-
portant mechanisms through which a laser beam can interact with
the semiconductor matter. The absorption of energy can take
place through linear processes like band to band transitions,
free and bound carrier excitation, lattice absorption or it can
occur through nonlinear processes, e.g., avalanche mechanism,
self-focusing or plasma instabilities. Most of these mechanisms
are described in detail in this chapter.

Chapter 3 gives the theory of the Hall effect as applied
by Van der Pauw to determine the carrier mobility in semicon-
ductors. The experimental details regarding the fabrication of
devices and the experimental setup to determine mobility, car-
rier concentration and conductivity are given. Since radiation
damage can alter the lattice structure and introduce extra-
scattering centers, the theory of different types of scattering
mechanisms is also included in this chapter.

Experimental results on CW CO2 laser damage in different




£
71
&
&
0
-t

semiconductors are given in Chapter 4. It is shown that the ex-
perimental damage thresholds can be explained [14] by applying
the theory of parametric instability as formulated by DuBois and
Goldman [15]. The observed mobility and carrier concentration
changes are explained [16] by applying the model of James and
Lark-Horovitz [17].

Chapter 5 gives the experimental results on damage thresholds
for semiconductors for Nd:YAG laser (wavelength 1.06 x 10-6 m) .
The theory of parametric instability again explains the damage
thresholds quite well. It is shown that the results of modified
two beam instability of Kaw and Dawson [18] ‘do not explain the ob-
served damage thresholds. The theory of photon-plasmon insta-
bility of Gersten and Tzoar [19] is also applied to calculate the

damage thresholds for different semiconductors, and it is seen

that the theory does not predict the damage thresholds correctly.

These two instabilities have been used incorrectly by Shatas et al.

[20] to explain the damage thresholds for GaAs at CO2 laser wave

length.
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CHAPTER 2

FUNDAMENTAL DAMAGE MECHANISMS

This chapter describes the possible mechanisms via which
electro-magnetic radiation energy can be absorbed by matter, par-
ticularly by semiconductors. When the energy absorbed by a semi-
conductor exceeds a certain level, mechanical or electrical damage
can occur. This energy is called the damage threshold of that
semiconductor. Here mechanical damage means any sign of burning
of the surface or pit formation or any other visible change in
the appearance of the semiconductor surface. Electrical damage
stands for any changes in carrier mobility, carrier concentra-
tion or carrier lifetime.

The following damage mechanisms will be described:

1. Band to band transitions

2. Free carrier, bound carrier and lattice absorption

3. Avalanche mechanism

4. Self focusing

5. Plasma instabilities.

Here it should be pointed out that this list is by no means

intended to be complete and exhaustive.

15 BAND TO BAND TRANSTTIONS [1]

The probabilities associated with band to band transitions
were first calculated by Kane [2] in 1962, and the theoretical
predictions were promptly verified by Allen ané Gobeli [3]. The

absorption through a transition from valence band to conduction

ik b
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band of a semiconductor is called fundamental absorption.

Two types of transitions must be distinguished. Those in
which only a pﬂoton is involved are called direction transitions,
while those in which both a photon and a phonon are involved are
called indirect transitions. In indirect transitions, phonons
help conserve the momentum., Below, direct transitions in both

direct and indirect band gap semiconductors will be considered.

Direct Transitions (Direct Band Gap k =k . )
. max min

In any transition crystal momentum must be conserved. Hence
in a direct band gap semiconductor only vertical transitions will

be allowed (Figure 2-1). The minimum frequency of the photon that

Conduction Band

Valence Band

Figure 2-1. A vertical transition in a direct
band gap semiconductor
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can induce such a transition is given by
hv = E_(k X (2.1
v—c()-Ev() .1)

Assuming that the conduction band stays flat near k = 0,
then Ec(k) in the vicinity of k = 0 can be taken as a constant.

Differentiating Equation 2.1, we get

hdv

5
- dE_(k)
v

= - d(-E_ - E")
g

]

or hdv de' (2.2)
where the energy Eg is being measured from the bottom of the con-
duction band and E' from the top of the valence band.

Now the number of transitions Ntdv in the interval dv can be

written as

Ntdv = PkN(E')dE' (2.3)

where Pk is the probability associated with the transition and

N(E')AE' is the density of states in the energy interval E' and

e

E' + dE'. For a parabolic band

N(E') = AVE' (2.4)
where A is a constant determined by the nature of the semi-

conductor.

From Equations 2.3 and 2.4, one can write

Nydv = PkAE'%dE' (2.9)

From Figure 2-1, we have

E' = hv - E
g9

v

oy Y
Ntdv = APk(hv - Eg) h dv (2.6)

i
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From Equation 2.6, one can write the absorption coefficient
for a direct transition as

i Is 5
ay = A Pk(hv Eg)

which can also be written as

b
o B(hv - E ) hv > E
d g g

(2.7)

0 hv < E
g9

The value of B has been found quantum-mechanically by Bardeen,

Blatt and Hall [4] and is given by

1re2(2mr)3/2
B=——*f, (2.8)
- nch?me Ef
: o
where n is the real part of the refractive index and m is the

reduced mass of the electron effective mass and hole effective

mass given as

1 1 1
mooom T mr
i r e ™

fif is called oscillator strength and is usually of the order of

unity.

If m* = m* = m, then for n = 4
e h

) 4 i L -1 )
= 6.7 x 10" (hv Eg) fif(cm ). (2.9)

£ o
o d

Direct Transitions (Indirect Band Gap k # k_.
max min

The band structure of an indirect band gap semiconductox

is shown in Figure 2-2.

N N




i

TR

Conduction

Band

= Valence Band

Figure 2-2. A direct (A') and an indirect (B')
transition in an indirect band
gap semiconductor

In this case the maxima of the valence band and minima of
the conduction band lie at different values of k.

The absorption curve for Ge has been obtained by Macfarlane
et al. [5] and is shown in Figure 2-3. The peak in the absorp-
tion curve is due to a vertical transition of the type A' and an
exciton line. The absorption at longer wave lengths is due to

the indirect transitions of the type B' and the momentum is con-

served by emission or absorption of one or more phonons.

10
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Figure 2-3. Absorption in Ge due to vertical
transitions at k = 0

Indirect Transitions (k . # k
min max

As noted earlier, in indirect transitions one or more phonons
must be involved to conserve the crystal momentum. Therefore, the
minimum photon energy required for such transitions is given by

hv = E - E (2.10)

or hv = E_ + E (2.11)

Equation 2.10 implies absorption while Equation 2.11 implies

emission of a phonon in the process.

R ]




The absorption coefficients for such transitions have been
theoretically obtained by Bardeen et al. [5]. Though their for-
mula does not separate the contributions arising from the emis-
sion or absorption of phonons, it does take into account the two
possible ways in which a transition from a state in the valence
band to a state in the conduction band can take place. This is

shown in Figure 2-4.

k=0

® : @

Figure 2-4. Indirect transitions from the valence
band to the conduction band

Transition 1 corresponds to an electron excited from the

valence band to the conduction band without significant change

E:

12
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in crystal momentum. Since in this state of the conduction band

the electron has higher energy, it makes a transition 2 to the
state of lower energy in the conduction band with the emission
of a phonon of momentum kmin' Alternatively an electron may be
excited from a state in a valence band to a state in the con-
duction band through transition 3. The hole left in the valence
band then makes a transition to a state near the maxima of the
valence band by emission or absorption of a phonon.

To determine the total absorption coefficient one must add
the contribution from the transitions involving the absorption
of a phonon or emission of a phonon.

o, =0a_ +a (2.12)

where o is the total absorption coefficient due to indirect

transitions, aEand aAkare the absorption coefficients due to in-
direct transitions involving the emission and absorption of a
phonon respectively.

From Equations 2.10 and 2.11, we see that

o =0 for hv < E + E (2.13)
g P

a. =0 for hv < E - E (2.14)
g P

If k = 0 and kmin are well separated, then the transition
probability between a state near the top of the valence band and
a state near the bottom of the conduction band will vary only
slightly with k and may be considered as a constant. The total
absorption coefficient will then be determined by the density of

states from which the transitions are taking place and the relative

13
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probability of emission or absorption of a phonon of energy Ep'

The energy Ep will be nearly ﬁkmin and can be treated as constant.

The conservation of energy for such transitions requires

hv =E *+ E + E + E' (2.15)
g p

where E is the energy of the electron above the conduction band
and E' is the energy below the valence band. If E' is fixed,
then
hdv = dE (2.16)
The number of states in the conduction band in this energy

interval is given by

2
N_(E)QE aE ‘dE

L)
hy — B+ - E')%dE .
a(hv - Ep E') (2.17)

where a is a constant.

Now the total number of the pairs of states between which
the transitions lying in the interval v and v + dv are allowed
can be found by integration over all E' satisfying Equation 2.15.
From Equation 2.15, the maximum value of E' is given by

ES = hw =B £ . (2.18)
m

For the density of states of the valence band in the inter-
val dE' we have a'E'%dE'. Hence the required number of pairs of
states is given by integrating Equation 2.17

5

aa'hdv | (E! - E')E' aE"

(o}

N(v)dv

DE'2dv (2.19)
m

1}

where D is a constant.

14
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For the absorption of a phonon

E' =hy - E_+ E
m g9 P

therefore,

N(v)dv = D(hv - Eg + Ep)zdv (2.20)

Phonons are Bose particles and the probability that a phonon

will have an energy Ep is given by
N (E) = 3 (2.21)
L e i T e T T .
P P exp(Ep/kBT) -1
so that the absorption coefficient an is given as
b 2
A'(hv - Eg + Ep)
o, = for hv > E_ - E
A exp(Ep/kB'r) -1 g P (2.22)
='Q for hvi< E_ - E
g p
where A' is a constant.
Similarly we can show that
; )
A'(hv - Eg = Ep)
o = for hv > E + E
E 1 - exp(-Ep/kBT) a p > (2.23)
=0 for hw < E_ + E ‘
g P
/
Hence
2
(hv - Eg - Ep) (hv - Eg + Ep)
o = A* + hv > E_ + E
1 - exp(-Ep/kBT) exp(Ep/kBT) -1 g p
the = B, o+ B} ‘
= R -~ BE. =% € hv<xE +8 (2.24)
exp(Ep/kBT) -1 g p 9 p
- o 40 I A DRI R
< g P
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The phonon considered in the above treatment can either be an

acoustic or an optical phonon. In each mode it can either be a
longitudinal or transverse type. This will split the absorption

curve into four parts. Using the analysis given above, the values

of longitudinal and transverse acoustic phonon energies for Ge
have been found [6] to be as Ept = 0.008 eV, and Epg ; 0.027 eV.
In the case of Ge the absorption due to optical phonons is negli-
gible.

For Si, both acoustic and optical phonons give appreciable

contribution to the absorption. The phonon energies have been

found to be

0.0185 eV, E = 0.0575 eV

Acoustic Phonons E
pL

pt

0.091 eVv

0.120 eV, E

Optical Phonons Ept oL

A more exact treatment of absorption due to direct and in-

direct transitions has been given by Fan [7]. |

Transitions Involving Surface States

If the surface state density is high and the lifetime of {

these states is long, then an appreciable absorption can take

place through surface states. The quantum yields for such pro-

cesses have been calculated by Kane [2] and can be very high. i

2. FREE CARRIER ABSORPTION [18] |
When the incident photon energy is not enough to cause band

to band transitions, energy can still be absorbed due to intra-

band transitions. This is called free carrier absorption. Ab-

sorption due to intraband transitions is proportional to the

16




*

»
F
&
i

number of free carriers in the band.

In the non-degenerate case, semiclassical treatment can be
applied to the problem of free carrier absorption. The equation
of motion of a free carrier in an alternating electric field of

the incident wave can be written as

> ->
m*v(t) = -eE(t) (2.25)

where m* is the effective mass of the free carrier and v its ve-
->
locity under the action of the applied delectric field E.
In the presence of randomizing collisions Equation 2.25 will

be modified to
7 v -iwt
m* (v(t) + !%El) = eBe v (2.26)

where 1 is the appropriate relaxation time of the carriers in the
semiconductor. The charged carrier under the action of the ap-
int

> -
plied harmonic field Ee will be forced to oscillate with a

velocity
3(t) -iwt
Substituting this in Equation 2.26 and solving for v, one

gets

£
-eE

<v
|

(25 2%)
2 ke g
m* (= - iw)
%
The current density can now be written as
-
= nev

>
J

2
- ne“t >
m*(1l - iwTt)

where e is the charge on the carrier (electron or hole).

17
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From Equation 2.28, one can write for the conductivity as

2
olw) = ™= T'<-=j;——~)

1
g — .29
o (1 - iwt ) (2 )
where g is the dc conductivity of the carrier species.
- i y -iwt
Following a similar procedure and assuming r -~ roe , one

can solve Equation 2.26 for r and then write the polarization vec-

tor

oy
]
=
0]
o]

2
- >
= ne E

m* (w2 + iw/T)

Now the dielectric constant €(w) is given by

P
E(w) =1 + E
ne2
=1 + > (2.30)
-m* (W~ + iw/T)
or
o
L Bl R . (2.31)

7
T(w* + iw/T1)
Rewriting Equation 2.31,
g T %
E(W) =1 - ———5175—5 + 1 B (2.32)
1 + wr wl + wr
The real part of this dielectric constant when equated to
zero, gives the resonance frequency of the carrier plasma and can

be shown

w = e — (s 3:3)

18




The imaginary part gives the damping rate of the electromaqg-

netic wave or the absorption coefficient, which in this case is

0oT 11 |
= 2.9 |
2 2 2) (2.34) |

L+ o' T nceo
where n is the real part of the refractive index, c the velocity
of light and eo is the permittivity of free space.
Now two cases arise:

(a) wt > > 1, which is true for most IR frequencies

e % X
2 2} nece
w'T o)

Substituting f
m*py
C
'[ =
e
and
=n
00 euc ’
3
a = - 2.35)
mzm*z ce = :
Ucﬂ ho

This equation shows that the absorption coefficient for free
carriers is directly proportional to the carrier concentration
and the square of the waveieﬁqth.

(b) For very low frequencies wT < < 1

and, therefore

-
nce
(0]
€
(o} -1
= 3.75 (——) g cm (2. 30)
€ o
¥
s where ¢ is the dielectric constant of the semiconductor.
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Expressions 2.35 and 2.36 have been experimentally verified by

by Gibson [9].

Bound Carrier Excitation

Materials that are characterized by a band gap show a low

frequency tail of the fundamental absorption. This absorption co-

efficient can be expressed as

Electronic %
Absorption Edge
(Urbach Tail) 4

__Vibrational |
Absorption Tail

102— Fundamentat

ABSORPTION COEFFICIENT O cm~!

and . "Extrinsic
10-3— combination Absorption
Lattice rRegion
10-4— Absorption
Bands
| |
|Q-6_|_.|_|_LL|.uL_L_.|._Lu.u|l._|_L_.|_LLm|_J_.L_LuJu
10 102 103 104
FREQUENCY, cm"!
Figure 2-5. Optical absorption versus optical frequency

——r——g——————

for a typical material (After Refcrence
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afw)y = A exp[B(Em - Eg)/kBT] (2.37)

where A and f§ are constants. This expression is called Urbach's
rule {10, 11}. There have been several theoretical attempts to
explain this result and none of them is satisfactory. The most
recent attempt to explain this effect is by Dow and Redfield [12].
The Urbach tail is usually very steep and can produce signifi- f
cant absorption for those materiéis whose band gap is not more

than 20 kBT above the frequency which one wants to transmit [13].

i This is shown in Figure 2-5.

Lattice Absorption

The vibration spectrum of diatomic lattices has two branches,
namely acoustic and optical. The electric field of the incident
electromagnetic wave can excite optical vibrations in the lat-
tice, thereby causing strong absorption at the resonance frequency.
A number of investigations have shown that the absorption coef-
ficient can be written as [14]

~w/w
afw) = Ae e (2.38)

where Wy is of the order of Restrahl frequency and varies with

lattice temperature. The presence of impurities can cause extra
« absorption by providing different modes of vibration in the crys-
tal. An excellent review of the current work is given in

reference [15].

! d 3, AVALANCHE MECHANISM (16, 17]

The approximate equality between the rms ficld of the lascor

M

™
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pulse and the dc breakdown field of several alkali halides and

other band gap materials has led Bloembergen [17] to believe that
the process of laser induced breakdown is electron avalanche sim-
ilar to the dc avalanche breakdown of reverse biased p-n junction:.

This theory is an extension of Shockley's dc avalanche mech-
anism. A few "lucky electrons" undergo momentum reversing col-
lisions just in time to be further accelerated by the reversed
field of the laser pulse. In other words the collision time of
the electron is an odd integral multiple of the half period of the
laser pulse.

The equation of motion of an electron in the presence of

collisions can be written as

L 7
m*%¥ + eEe "UC 4+ vum*r = 0 (2.39)
e C e

> =iwt | : : e
where Ee is the laser field, vc is the collision frequency of
the electron in the crystal lattice and mé is the effective mass
of the electron.

Solving Equation 2.39 for r produces

> .

e (Sﬁki:iﬁﬁl (2. 40
m¥* -iw + v

(= c

The rate at which an electron moving with the above velocity ex-

tracts energy from the electron 1s given by

>

1 . o
W = 5 Re(r +« eE*)

2.41)




o, 8
. -

L

oV

Now writing

v_ = =
* ’
c MM,
therefore,
* ueE2
ulia 2 2
(L + w't)

where E can be considered as rms electric field of the laser.
When the energy gained by the electron exceeds the band gap
of the material, it will cause further ionization. This process
will keep multiplying till the electron concentration is
17 18 -3 : : : : ;
10 ~ 10 cm ~, which gives an exponential contribution to the

index of refraction

2ne21(i ~ WwT) &

(2.42)

(n + ik) = n exp| [ «(E)dt (2.43)

2.2
* +
nomew(l w'TY) o)

where no is the linear index of refraction and a(E) is the elec-
tric field dependent ionization rate. n is the original number
of electrons per unit volume. The exponential absorption even-

tually causes damage.

The application of this process to explain laser damage thre !

olds for semiconductors has recently been questioned by

Shatas et al. [18].

4. SELF-FOCUSING [19, 20, 21, 22, 23]

For most purposes, the refractive index of a substance can
be specified as a single number. However, it is well known that
the refractive index is dependent on temperature, wavelength and

electric field. When a medium is sufficiently absorbing, the
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refractive index has to be represented as a complex number.
An applied electric field polarizes a medium. The simplest
case 1is when the polarization is proportional to the applied elec-

tric field. It can be mathematically stated as

P = ¢ yE .44
coxE (2.44)

where x is known as the susceptibility of the medium. In an aniso-
tropic medium y may be different in different directions and has

to be expressed as a tensor quantity. In Equation 2.44, x is in-
dependent of the electric field. For very high electric fields,
local polarization cannot be neglected and, therefore, x would
become a function of the applied electric field. However, the
dependence of B on E must be such that it reduces to Equation

2.53 for low electric fields. Also as E reverses, P should re-
verse too. In other words 3 can be a function of only odd powers

=¥ 2
of E. Hence one can write,

>nf 2 4 =
P = ¢ 0 b ST 2.45)
Neglecting x3E4 and higher order terms in the nonlinear
polarization,
2
= + 2.46
Xege = X3 * X5E (#<48]

Now the refractive index is given by

Neff = S Xeff)

X
(1+x1)l’+l————g——~1-:2

i

e




where 'B is the linear refractive index and

ORI AN |
9
¥ 261 + xl)& 2”0

1s the nonlinear part of the refractive iédex and under ordinary
circumstances it is very small. For very high electric fields
the nonlinear contribution to the refractive index can become
significant and cause self-focusing as explained below.

Consider the behavior of light rays on the boundary of a

beam having a rectangular distribution as shown in Figure 2-6.

Let 2S be the width of the beam.

Figure 2-6. A rectangular em wave of width 2s
The refractive index of the medium inside the beam can be

written as Equation 2.47

Outside the beam, the refractive index is simply N

E A ray of light starting from 0 will suffer total internal
1 reflection at C, if
®
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¥
Z
&
0
3

® = Cos
o

80, however,

diameter 2s it is

(a)

(b)

& S22
d 2n°s

Depending on

2
no-+n2|E|

"o

(2.48)

is limited due to diffraction and for a beam of
given as

(2.49)

the value of 60, the following three cases arise.

the beam would spread.

o d

In this case the beam would not spread and would get self-
trapped.
(c) eo > ed

The beam would converge or be self focused.

Case (b) determines the threshold power for self focusing.
1.€. 80 = ed
A ¢

-1 "o 1. 22X
Cos > n &
no = n2|E| (e]
or
"o 1.22A 1 [1.22) -

g * eoa 2n_s ey 2 2n_s

1 S n2|E| o o
or

n 2
2 o [1.22A P
= — —_— & (
2 o
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Hence the threshold power for self focusing can be written

s g 2 2
[th o (ns )nolEl

S AT (2.51)
64n2

=1}

For CS = 10 ESU

then at

Aw 0.7 %100 cm

Pth

|13

50 kW
Such powers are easily obtainable in modern day lasers.
The nonlinear refractive index n, can be due to several
causes. The three main contributions to n, come from
(a) Thermal
(b) Electrostriction

(c) Kerr Effect.

(a) Thermal [24]

Heating of a material causes density changes which according
to Clausius Mossoti relation would change the refractive index.
Thermal contribution to n2 is negative and, therefore, causes
de focusing action.

(b) Electrostriction [25]

Electrostriction is the mechanical deformation caused by the
electric field of the optical beam. This causes an increase in
density and, therefore, an increase in the refractive index. The

contribution to n, in this case is positive and causes sclf-

¥ 2

é focusing. This effect is very important in solids.
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)  Kerr Effect [26]

The increase in n, due to Kerr effect is very important in
liquids with anisotropic molecules. The optical field of the
laser beam produces an alignment effect on these molecules. It
can be shown that

2"(P||' PL)NO

N, | ~~oer———————— o [, {2.52)
/. BSkBTno
where
2
(n +2)4
PR ITAcc
81

is the Lorentz local field correction factor. No is the number
density of the molecules, p, and p, are respectively the princi-
pal polarizabilities of the molecule parallel and perpendicular
to the electric field of the laser beam.

Once the self focusing action starts, the laser beam will
have to travel a certain distance through the medium before it
will come to focus. It can be shown that this distance is

given by [22]

p -
¥ th
D = DO( l - P ) (2.
o
where
D =
o

and Po is the power of the optical beam.
Let

P = 2P

s th' then

28

5




#
&
Y

107 Vv/cm

o}
[}

i |
n. = 10 1! Esu
2
and if s = 1 cm for a CO2 laser, then
D~ 10 ¢m
o
so that

D = 14.14 cm.

The above analysis shows that self focusing would be very
unimportant for semiconductor materials, where the thicknesses
involved are only a few microns.

It should be noted that a beam can never be focused to a

geometric point due to diffraction effects.

5. PLASMA INSTABILITIES [27, 28]

In high mobility semiconductors electrons and holes can be
treated as free particles of an effective mass m*, interacting
with each other through coulomb forces. Such a system can be
treated like a plasma if the potential energy V due to the

coulomb interaction and the kinetic energy K obey

(2.54)

=<
A
[

Such a condition is easily satisfied in most semiconductors
and, therefore, semiconductors can be assumed to be containers of
electron and hole plasmas. A plasma has its characteristic fre-

quency given by
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4 ne :

= el (2.59)
wp cm¥* y

whenever the frequency of an interacting electromagnetic wave is
close to this plasma frequency, several different types of in-

stabilities can be excited due to the resonance effect. A brief

description of two of the important instabilities relevant to the

present work is given below.

Two Stream Instability [29, 30]

This instability has been treated by Nishikawa [29] and also
by Kaw and Dawson [30]. This type of instability can occur in a
plasma in which the ions are stationery and the electrons are
moving relative to it.

The basic equations of motion of ions and electrons are the

continuity equation and the momentum conservation relations as

fiven below.
(’“j
3tV vy =0 (2.56)
dv
m.n, (ff2‘+ Vi, © W, == 9Yp. + n.e.(E Sinwt + E")
it ot i J 5 3 3J
- m.n.vV.V,. (2:57)
) )

where ij gives the pressure gradient, E' the self consistent
field of the electrons and the ions and all other terms have
their usual meaning.

I'inally E' is given by the Poisson's equation

Ve E' = 4n2e.n. (2h-58)
g lJree)
J
-!
vg Assuming that nj (the ion density) is a slowly varying functio
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of time and neglecting

3

e

m,
1

one can solve [30] the above equations to get the following fourth

order dispersion relation for w

1 =°’; e + A . (2.59)
m. w (w - kv )
1 (o]

where vo is the relative velocity of electrons w.r.t. ions and k is
the wave vector of the electromagnetic wave. If all the roots
of Equation 2.59 are real, then each root would indicate a pos-
sible oscillation given by
o ->
i(k » r - mnt)
E' « e (2.60)
If some of the roots are complex, then they would occur in
conjugate pairs. Let these roots be written as
w, =B + iy (2.61)

The time dependence of the E-field will now be given as

SR >
i(k » ¥ = wnt) Ynt
E' x e s e (2.62)
Equation 2.62 suggests that the electrostatic wave can grow
exponentially if Yn is positive. This would give rise to the two

stream instability,

Rewriting Equation 2.59, by putting

[}

X = —

w
and

kv
y P u

P

3l
ot - g S T N NN S AT U g B g el T o =

O
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B o e 1 F(x,y) (2.63)

x2 (x - y)2

For any given value of y, one can plot F(x,y) as a function
of x. This function would have poles at x = 0 and x = y as shown

in Figure 2-7.

F(x,y)

— e . e} T = =Y Yo Y

y=Yy

x=0 X=y

Figure 2-7. Function F(x,y) in the two stream instability

For y = Y, >y, the line F(x,y) = 1 cuts the curve at four
points corresponding to four real roots. However, for y = Yy only
two roots are real and the other two must be complex, giving rise
to an unstable wave in the plasma. This would happen for small
y, i.e. for small kvo. With the help of the dispersion relation

it can be shown that the maximum growth rate of this instability

is given by
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m \L/3
Im(wi> - an) (2.64)

Kaw and Dawson [31] further show that the roots of the dis-

persion relation are complex, i.e. the instability occurs if

Y
k_T
E
: 2 /2 —ﬁ =41 5 =
em e e
1
1 )
1 ot e ] (laEiees (2.65)
w £ 2 w2
R wR 1l - :—2—
R

where Ti and Te are the ion and electron temperatures and can be
assumed to be equal in case of semiconductors. Hence Equation

2.65 can be written as

E nt o : "i %
co == t1-~=) |1+ —— (2.66)
m w m 2 2
e e wR 2 1 - w
R i
"R

Here (2.67)

= Equation 2.66 gives

(2.68)
Converting Equation 2.68 into power threshold
5
v_\2 KT\ mow?
p = o < o 4w _E. A
th No 81\ w m 2
R e e
cn [ &
o 2 e w "
= ——= — [ — . 2.69
27 Vn 4 (m) (kBT) ( )
(& R
@
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An application of this equation to calculate the damage
threshold for CO2 lasers and for Nd:YAG laser gives results that

are 2 to 3 orders higher than the observed damage thresholds.

Parametric Instability

This type of instabiIiﬁy was originally formulated by DuBois
and Goldman [31, 32, 33, 34] and later has been treated by several
other authors [35, 36, 37].

This instability arises if one feeds energy to the plasma at
a rate faster than it can dissipate it. Parametric instability
arises when an intense laser beam of frequency Wy interacts with

the plasma of resonance frequency W If s =y is close to the

ion acoustic frequency or ion optical frequency wp v the ion waves

e .

will absorb energy resonantly. Similarly u and Wy, can interact
to pump the electron plasma.

Therefore, monochromatic pump radiation of the form

L E exp itk e ¥ ]

. lexp e - w t + .

5 IO exp 1 ( = r OL) e c
will modulate the plasma at the beat frequencies w * w, E3le
The longitudinal polarization in a medium under the action of the
laser field will be a function of the fields at w * Wy frequencies.
The modulation of the longitudinal polarization can be neglected

at all other frequencies. Therefore, inside the medium

NL » > >
(kw0 sk=k_,w=w_)-*
(e] o

. h e S
<E_ (k,un) = PL(k,m) IaL(k,lu))(L(k,m)'FEo X}, oY%

E_(K-K J4E_ sy P (k Rk b )
g e e A ( 0"’ e’
¥ S
2 LL(k+kO,w+mo). (2.70)
~
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Similarly one writes

P
PL(k,w-u)o) = "EL(krm-wo) = EL(kJN_wo)XL(klw-wo)

+ E sy (’k -w k,w)E (k UJ) (2 71)
(o] L O' O’ £ L f ¥
Rewriting Equations 2.70 and 2.7L , we get

K. Gew) 4B o x ik k VE, (k ) =0 (2.72)
EL( W) L ;W) EO XL ( olwol W wO T W wO = .

B oay K,0)E. (k,u)+€. (k JE. (K =0 (2.73)
o XL ( OI—UOI W EL( ,w) EL( W wo L W wo) = .

where EL is the effective longitudinal electric field in the plas-

ma, EL(k,m) is the linear longitudinal dielectric constant and

NL

is the total susceptibility of the electron ion plasma. Xq,

Xp

is the nonlinear longitudinal susceptibility that connects the

longitudinal polarization to EL(w = wo).
In writing Eguations 2.72 and 2.73, it has been assumed that
? > -> -
inside the medium k - ko =]

Now Equations 2.72 and 2.73 will have a non-trivial solution 3

i£
> > NL > > >  NL - > > -1
nL(k,m)-Eo-xL (ko,mo,k,w~mo)Eo ) (—ko,—wo,k,w)[EL(k,w—wo)] =0
(2.74)

The left hand side of Equation 2.74 is also called the non-

linear longitudinal dielectric constant
NL >

i CL (k,w) .

It can be shown that [32]

> >

r iek*E

; > JONL » A = o e e > .

% Eo XL (ko'wo'k'm wo) = ( 5 ) [xL(k,w-wo)—xL(k,un] (295)
i ¥ 2m w

i 7 e O

|

. W
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If now
l—(k—<< 1L
D
where
4mne
k. = —
D kBT

to be equal to

2
o
k2
: > 2
E *NL(E ; g iek Eo EE
by Np, (Tppi aRa0TE R S 212
2mewo k

Substituting this in Equation 2.76,

2 2
———*——91- EE- (e (K w=w )]-
gt o

2(k-E
eV e, 0) = e, (Kow) .
0 i Tl G 214
i L im w k2
e o
or
NL > % /\2
(> (klu)) =& (klw) =
L L k2 A
(k5>cL(k,w-wo)
D
whiere
w \4 I
y A2 w2l =B Coszﬂ =
4 \w nckBT

and T is the incident intensity.
o

damage thresholds.

1

then the term in the square brackets in Equation 2.75 can be shown

(2.76)

(2. 77}

Expression 2.77 will be used in Chapter 4 to explain CO,
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CHAPTER 3

HALL EFFECT AND SCATTERING MECHANISMS

Since its discovery in 1879 [1], Hall effect has been one of
the most powerful methods for determining the carrier mobility and
carrier concentration in semiconductors. Till recently, this meth-
od had the disadvantage of requiring devices of specific shape.

But in 1958, Van der Pauw [2] extended this method to be applied
to a sample of any shape. In the following, we shall give the

] theory of Hall effect and Van der Pauw's method and describe the
experimental details of determining mobility and carrier concen-

tration, before and after laser damage.

1168 HALL EFFECT (3]

When a conductor or a semiconductor carrying current is
placed in a magnetic field, an electromotive forcé is produced
across it in a direction perpendicular to both the current and
the magnetic field. This is called Hall effect.

Consider an n-type semiconductor bar of infinite length and
width d, as shown in Figure 3-1. Let } be the current density
in the x direction and a magnetic field ﬁ be applied in the z-
direction. Let n be the carrier density.

The Lorentz force on an electron in the bar is given by

-

> -»> >
F=e[E + (v x H)] (3edh)

> S
where E is the electric field and v is the velocity of the electron.

As no current can flow in the y-direction, the net Lorentz

P force in this direction must be zero,
?C'\
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Figure 3-1. A current carrying semiconductor bar
of infinite length placed in a
magnetic field
Ve
F =0
Y
or
> >
e[E + (vxH) ] =0
Y b g
or
E v «H=0
Y
18 ;
E = =H ¢ v 32
v ( )
But
r -»
|3] = ne|v]|
» Hi
E = - -
y ne (3.3)

Equation 3.3 gives the magnitude of the Hall
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electronic flow in the x-direction sets up an electric field,

given by
= oéx (3.4)

where g is the electrical conductivity of the semiconductor,
or
-+ >

o= neueEx (3.5)

From Equations 3.3 and 3.5,

£, |
—Y_ = tang = -Hy (3.6)
|Ex| .
X
wnere § is called the Hall angle.

Equation 3.3 is usually written as
|E,| = ra3 (3.7)
Y

where
R = - ﬁ: , and is called Hall constant. 1In deriving the
above equation, one has to assume that the energy surfaces of the

semiconductor are spherical, which is rarely true. Therefore, the

expression for the Hall constant should be corrected as
R = - — (3.8)

where r now would depend upon the type of energy surface involved.

In general, it can be shown [3] that

- 2
)
R=- L & (3.9)
2
T
e

wherc RO represents the statistical average of the electron life-

time over the proper distribution function.
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If TeCE—s, which is true in acoustic phonon lattice scatter-

ing (E being the energy), then

- 2
(Te) i
b e
T
e
so that
o g L A
ot el (3.10)

(41,

~ 2
Gl _ws

— " 512

&

e

i 1 (315w
R=-— (512) (3.11)

From Equations 3.10 and 3.11 it can be seen that in practice
r is very close to unity and can be considered so in experimental
measurements.

The conductivity of an n-type sample may be written as

0 = -neu_ (Sa12)
where Mo is called conductivity mobility.

Substituting for ne in Equation 3.8, one gets

u
;! (3.13)
) 2

where u, = Ro and is called Hall mobility. When r - 1,




e ————

T

Y.+ - ik P

If in a sample both the holes and electrons are present, then

it can be shown [5] that

e
TN (VO
Y v AR - AN (3.14)
 (pu, + nu)?
h He

A determination of R experimentally determines the carrier
concentration in a sample. If the conductivity is known, then one
can also determine the mobility of the carriers. As stated in the
beginning, this method requires a sample which is effectively very
long as compared to its width. Van der Pauw has extended Hall ef-
fect method in such a way that it can be applied to a sample of an

arbitrary shape.

2. VAN DER PAUW METHOD [2]
Consider a sample of an arbitrary shape as shown in Figure
3-2. Let d be its thickness and let A, B, C and D be four ohmic

contacts on the periphery of the sample.

Figure 3-2. A sample of arbitrary shape
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Assume the following:

(a) The contacts are at the circumference of the sample.

(b) The contacts are sufficiently small.

(c) The sample is homogeneous in thickness.

(d) The surface of the sample is singly connected and
has no isolated regions.

Define

then one can show by using elementary electrostatics that

d d
exp [ “RAB,CD ;] + exp [— "PBC,DA p]— 1 (3.15)

Here p is the specific resistance of the sample. Solving Equa-

tion 3.15 for p,

_ a2 ‘Bam,cp * Bee,ma . RaB, cD e ‘
‘] b i R N -
n2 > RBC,DA

where £ is a function of the ratio

RAB,CD

RBC,DA

only and satisfies

Ras,co ~ Rac,pa {exp(n 2/f) |

= f arc cosh G
| 2 |

+
RAB,CD RBC,DA

“« 1f and R are nearly equal (which will be true for

RAB,CD ‘BC, DA

a sample of nearly squarc shape), f can be approximated by

- q2
£ 21 - RAB,CD RBC,DA &n2

s | FaB,co * ec,on] 2

~

3 14
| Bas,cp ~ Rec,oa|” lun2)?  n2)?
| ®*as,cp * Rec,on) |4 e B
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If Ryp cp 37d Ry pp 3re exactly equal, then

f =1,
and from Equation 3.16

ad o
2n2 "AB,CD

Now if a magnetic field is applied perpendicular to the
sample, then the equations

0

div ;
J=o0

curl
where 3 is the current density, remain valid. As the contacts are
sufficiently small and at the circumference of the sample, the
outer lines of flow which must follow the circumference fully de-
termine our boundary conditions. Hence the lines of flow do not
change when a magnetic field is applied. However, the magnetic
field causes an extra potential difference between any two arbi-
trary points. This can be shown from Hall effect to be

uHulp

V= —-
: d

where My is the Hall mobility and I is the current.

_ 4 av
uH pH I
a
OF Uy ™ on “Rae,ac (3.18)

where H is the magnetic field and ARgp,pc is the change of Rgp,ac
due to the magnetic field.

Using Equations 3.17 and 3.18, one can find the resistivity
and Hall mobility of a sample, provided one has

(a) A square sample of the semiconductor

(b) Four ohmic contacts on the four corners of the sample.
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3 FABRICATION OF HALL DEVICE
Bulk semiconductor materials Si, Ge, GaAs and GaP were ob-

tained commercially in wafers ranging from 0.0l cm to 0.025 cm

in thickness. GaAsxP was obtained in epitaxial (~300 pm) wafer

1-x
form on intrinsic (108 Qcm) GaAs substrate.

These wafers were lapped, polished and chemically cleaned,
using procedures developed at The University of New Mexico. A
description of these procedures is given elsewhere [6].

Ohmic contacts were evaporated on these wafers through spe-
cially prepared masks in a vacuum evaporation svstem at pressures
of 1076 torr. These contacts were heat treated in an inert atmos-
phere from 5 to 15 minutes. The current-voltage characteristics
between any two contacts showed good ohmic contacts.

A diamond subscriber was used to cut the wafers into (.25 x
+295) cm2 Hall devices. The Hall device was mounted on heat con-
ducting alumina plates by using heat conducting, electrically in-
sulating epoxy. Four strips of aluminum were evaporated on the
four corners of the alumina substrate. Wire bonds were made be-

tween these four plates and the four ohmic contacts on the sample.

A typical Hall effect device is shown in Figure 3-3.

3/4"

1/2H

()

Semiconductor
Alumina Plate —<

Figure 3-3. A Hall effect device
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4. DESCRIPTION OF MOBILITY APPARATUS

The Hall effect device shown in Figure 3-3 was mounted on a
stage specially prepared from high quality oxygen free copper.
This stage was placed in perfect thermal contact at the cold tip
of the displacer of a cryogenic refrigerator, as shown in Figure
3-4.

The displacer is surrounded by a vacuum shroud that is evac-
uated to 10-4 torr by using a mechanical-diffusion pump system.
Four wires are fed through to make electrical connections to the
Hall device. A heater element is wound over the cold tip to con-
trol its temperature, which can be adjusted from 12°K to 300°K.

A chromel vs. gold--0.07 atomic percent iron thermocouple is used
to measure the temperature of the cold end to an accuracy of *0.2%.

The displacer assembly is mounted between adjustable pole
pieces of a water cooled electromagnet. The magnet is capable of
giving fields up to 2.5 teslas.

Resistivity and mobility were determined using the following
steps.

Step 1: A current of a few milliamperes was passed through
two adjacent contacts of the sample by using dc batteries. The
Hall induced electromotive force was measured across the other
two contacts. The current was then reversed in direction and Hall
voltage was remeasured. This was repeated for all combinations
of adjacent contacts and the average of the eight readings was
taken to give RAB’CD of Equation 3.17 and hence to determine
resistivity p.

Step 2: The current is now passed through two diagonal con-
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L tacts of the sample and the Hall voltage is measured across the

other two diagonal contacts. Then a magnetic field is applied in

a direction perpendicular to the direction of current and the
change in Hall voltage determined. The magnetic field is reversed
and the change in Hall voltage remeasured.

Step 3: The current through the device is reversed and Step
2 is repeated.

Step 4: The current is now passed through the other two
diagonal contacts and Steps 2 and 3 are followed.

Average of these eight readings is taken to give ARBD,AC of

Equation 3.18 and thus Hall mobility is determined.

5 SCATTERING MECHANISMS

The mobility of carriers in a semiconductor is determined
by the scattering mechanisms in the lattice. Radiation damages
the lattice structure of semiconductors due to which electronic
properties are degraded. Particle damage is known to cause change
in carrier concentration, lifetime and mobility of a semiconductor

due to the creation of interstitial-vacancy pairs or complexes.

These changes may be significant depending on the amount of ra-
diation dose. The defects introduced may or may not dominate

the electrical properties at room temperature because of the lat-
tice vibrations. However, at low temperatures lattice vibrations
can be killed and the effect of the introduced defects easily
observed. Therefore, in this chapter the temperature dependence
of different scattering mechanisms that control the carrier mo-

bility and electrical conductivity of the semiconductor lattice

8
x

g o
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will be examined. This dependence is what eventually determines
the nature of radiation induced defects.
Scattering mechanisms can be divided into three parts.
(a) Lattice scattering [7, 8, 9]
(b) Impurity scattering: ionized [10, 11] and un-ionized [12]
(c) Defects [13, 14], intervalley [15]) and carrier-carrier

scattering [16]

(a) Lattice Scattering

The vibration spectrum of semiconductors has two branches,
namely optical and acoustical. At moderate and low temperature,
the thermal energy available is insufficient to excite the high fre-
quency optical mode and, therefore, the scattering of carriers can
be due to acoustical vibrations only. One considers only the scat-
tering of charged carriers by longitudinal mode vibrations, because
the effect of transverse modes can be shown to be negligible.

The passage of a longitudinal vibration through a crystal
would give rise to alternate regions of compression and extension.
A compressed region would exhibit an increase in band gap, while
an extension would cause a decrease in the band gap. This is
shown in Figure 3-5.

Along the length of the crystal, therefore, the band gap as
a functionof distance would look like that shown in Figure 3-6(a)
and can be approximated by Figure 3-6(b). One may then calculate
the reflection probability for an electron incident upon a single
step of height 6Ec as shown in Figure 3-6(b). Neglecting Doppler
effect due to a barrier moving at the speed of sound, it can be

shown from elementary quantum mechanics that
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Figure 3-6(a). The sinusoidal variation of band gap caused by the
compressional and extensional forces associated with

longitudinal thermal vibration

Ec bl

T T

Irtgure 3-6(b). A "square wave" variation which approximates
the one shown in Figure 3-6(a)
2
Kok
(¢} 1
g R = (k P ) (3.19)
& o) 1
and T (3.20) |
i
:
i where !
5 (3.21)

Ry

and  k
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EO being the energy of the incident electron. If the step CEC is

small, which can safely be assumed, then k, £ k With this ap-

1 o’
proximation, Equation 3.19 becomes
m* SE
RE —‘;Z—C (3.22)
2Rk
Now to a first approximation
v
= - { —
GEC n (V ) (3.:23)
o
where
&y
v
o

represents compressional or extensional strain and n' is the de-
formation potential constant. If 8p is the maximum pressure

created by the compression or extension, then the stored strain
energy is

o AT
SE = 3 Spdv = A kBr (3.24)

vhere A' is a constant. The term X'kBT arises because the source

of this strain energy is thermal. Also by definition the bulk

compressibility is given as

LoV
G = o= ol (3.25)
vO Sp
From Equations 3.24 and 3.25, one has
L
5v 2 g 2R kBT -
V v (3...(\)
o o
Substituting this in Equation 3.23 gives
S 2
Ec {3:27)
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From Equations 3.22 and 3.27 one has

2 2
m,*"n"BA 'kBT

2v (5% 4
(o] O

R 2 (3.28)
If ¢/2 is the linear dimension of the volume Vo' Ae the

mean free path, then in going through a distance %2/2, the scat-

tering probability is £/2Xe. Therefore, replacing R in Equation

3.28 by 2/2Ae produces

2. =2
* ' ]
% me* 'n' RA kBT

2)\

e Y (E4k 4)
o o

4
Bt N h (3.29)

e 2 2
* [ (]
8me A BkBTn

|
%

where we have replaced ko by 2n/% and Vo by 23/8 3

The collisions between electrons and phonons are very simi-
lar to perfectly elastic collisions between two hard spheres and
can be described by a velocity independent mean free path. As-
suming the velocity distribution of electrons is Maxwell Boltzmann

it can be easily shown that the mean free time Te is given by [18]
7 = — (3.30)
3nc
where c is the mean thermal speed of the electron. From Equations
3.29 and 3.30 one has
h4

T, = 5 (3.31)
3v/an m;3/?x'3(kBT)3/zn'

Even though the above equation has been derived qualitatively,
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it is not very much different from the quantum-mechanical ex-

pression [19], which is given as

4
/8 hc,,
T Wi voue (3.32) :
v3/2 3/2. 4 ;
m? (kBT) n |

where Cyo is the elastic constant for a longitudinal extension in

the [110] direction. The corresponding mobility is

= 4 ‘
. eh'Coy e ]
* 3 5/2 3/2_,2 ) |
* [
e m* (kBT) n

3/2

The theoretical prediction peaT- is only approximately
true and in actual practice the variation is found to be stronger
in Ge and Si. This can be attributed to the following reasons.
(i) In p-type Ge and Si, optical scattering cannot be
ignored.
; (ii) In n-type Ge and Si, energy surfaces are ellipsoidal

and effects of multivalley scattering cannot be

ignored [20].

(b) Impurity Scattering

Ionized Impurities. The determination of the effect of

ionized impurity scattering cn mobility of electrons is based
on the theory of scattering of charged particles by the coulomb
E : potential of the nucleus, which was originally developed by

Rutherford [21]. He showed that the scattering cross section of

a charged particle of charge e by a fixed nucleus of charge Ze

is given by

CRa Sy e A At W




2em*y
e o

e (3.35)

The meanings of the various terms involved in Equations 3.34

and 3.35 can be seen from Figure 3-7. F

mv,cos
Trajectory FRD

of Electron

mvoe

Figure 3-7. Rutherford scattering of an electron
from a nucleus of charge Ze

The number of collisions an electron can make per unit time
into a solid angle d{! can be shown to be Nvoo(e)dQ where N is the
number of charged scattering centers per unit volume. In each
such collision the momentum change is only mvo(l - Cosf), as can
be seen from Figure 3-7. The relaxation time, however, is the

time during which the average forward momentum is zero. Hence in
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this sense, the effective number of collisions is given by

g <) o = aflX
dneff = Nvoo(e)(l Cos ) dQ d(Te) (3.36)
i

Equation 3.36 gives the differential of inverse time period for
electrons of initial velocity LA scattered through an angle 6 into
a solid angle dQ. The total relaxation time may be found by inte-
grating Equation 3.36 over the solid angle and averaging over
velocities.

Assuming the scattering to be independent of the azimuthal

angle, integration of Equation 3.36 over the solid angle from polar

é angle 6 to 7 gives

n
=2mv_ [ 0(0) (1 - Cosb)Sin6de

T(Vo)
(¢]
o
2
2 em*v2
=g == % i) 1 $f e . (3.37)
o 2 2. 173 g
2em;vo 2Ze"N

The lower limit of integration has not been taken to be zero,
because in a crystal the coulomb potential of an ion has to be cut
off at a certain distance from it due to the presence of other ions.
It is reasonable to take this distance to be d4/2 where 4 = N-l/3

’ is the mean distance between impurity atoms.

2N1/3

and accordingly,

173
-1 _2Z€:2N /

3‘ 6=6 =2 tan
o

2
| r em*v
e o
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This expression has already been used to get Equation 3.37.
It is now necessary to average Equation 3.37 over the Max-
wellian distribution of velocities.

<t (v )>
; L [e] o

e <v2>
o
@
- m*v2/2k T
7 e o B
v e dv
o )
R 2.2 2 1 /3%
€ m* hmE.+ (em* v</22e“N
= e o e o
or Te = 5 = > (3.38)
2nZ"e N -m*v_/2k_T
‘/. 4 ol *"B
v e dv
o o
(o)

The integral in Equation 3.38 can be solved only approximately.
This is done by assuming that the logarithmic term varies much more
slowly with v, as compared to the VZ term. Making this approxi-
mation

/ 72

2 7 4 P
8e™ (kT) (2m%)

0 3/2
© en2e Qn[l + (7ekBT/2Ze2N1/3)2]

and hence

ot 8/2 c2 (kM) e
b= — = (3.39)

2
32 1/2
e Nen/ zze3m; ¢ zn[l * (7 kBT/ZZele/a) ]

This formula is called Conwell-Weiskopf formula [10]. Equa-
tion 3.39 shows that the mobility due to ionized impurity scatter-
ing is directly proportional to T3/2 and inversely proportional to
impurity concentration. Therefore, for low impurity concentrations,

only lattice scattering will be dominant.
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Neutral Impurities. The scattering by neutral impurities is

analogous to the scattering of electrons by hydrogen atoms.
Erginsoy [12] has shown that the relaxation time for this process

is given by

1 (2oﬁ3e

= > Nn' where Nn is the number of neutral impurities.
e m*
e

Hence mobility dependence due to un—-ionized impurities is

given by

et 3m 2

*
i .9__;_ (3.40)
e 20h EN

This type of scattering is important only at very low tem-

peratures where most of the impurities are un-ionized.

(c) Defect Scattering, Intervalley Scattering and Carrier-
Carrier Scattering

Defects such as dislocations scatter carriers as a result of
the strain around the dislocation which gives rise to a deforma-
tion potential. This has been treated by Dexter and Seitz [13].
The predicted temperature dependence of the mobility arising from
such dislocations is linear in T.

Dislocations also act as acceptors and, therefore, act as
negatively charged centers causing additional scattering.

Intervalley scattering involves the inelastic transfer of
an electron from one band at a certain crystal momentum to the
part of the same band at a different crystal momentum. This has
been further discussed by C. Herring [15].

Carrier-carrier scattering can be neglected under ordinary
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circumstances. However, carrier-carrier collisions randomize the

electron velocity distribution, thereby changing the probability
of electron scattering through other mechanisms. Such a treatment

has been given by Spitzer and Harm [l16].

<
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CHAPTER 4

RESULTS: CW CO2 LASER DAMAGE

The experimental results on damage thresholds and the changes
in electrical properties of the semiconductors due to CO2 laser é
radiation are given in this chapter. The results obtained are
explained theoretically.

The damage thresholds were obtained by radiating the chemi-
cally cleaned semiconductor samples in the form of Hall devices.
The damage criteria used have been described in Chapter 2. The
Ccw CO2 laser beam used was Gaussian in space with a diameter of
12 mm. A salt lens of 25 cm focal length was used to concentrate
the beam on the sample. The sample was displaced from the focus
so that the whole area could be uniformly radiated. The experi-
mental arrangement is shown in Figure 4-1.

The absorption coefficients [l] for most semiconductors at
10.6 pm are very small and, therefore, it can be assumed that the

energy is absorbed by the bulk uniformly.

| 2 DAMAGE THRESHOLDS

The experimentally observed damage thresholds for different
semiconductors are listed in Table 4-1. Also given in the same
table are their pre-damage mobility, carrier concentration and
band gap.

From this table we observe that the damage thresholds are
all of the same order and are quite insensitive to the original

arricr concentration and mobility.
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2. ELECTRICAL PROPERTIES

Conductivity

The electrical conductivity of Ge as a function of temperaturec
before and after laser damage is shown in Figure 4-2. It is seen
that there is a significant decrease in conductivity due to laser
damage, particularly at low temperatures. This shows that the de-
fects introduced by damage are very effective scattering centers at
lower temperatures. The lattice vibrations dominate the.created

defects at room temperature.

Carrier Concentration

The carrier concentration versus temperature before and after
laser damage is plotted for Si and Ge in Figures 4-3 and 4-4 respec-
tively. A magnified view of Figure 4-3 is given in Figure 4-5 to
show the significant carrier removal due to i;ser damage.

In general, the carrier concentration is decreased both in
Ge and Si at all temperatures. This shows that the laser created
scattering centers give rise to localized energy levels in the for-

bidden band which act as carrier traps.

Mobility

The mobility changes due to laser damage were very small at
room temperature. However, as the temperature is lowered, a sig-
nificant degradation of mobility occurs both in Ge and Si (see
Figures 4-6 and 4-7).

This confirms the idea that the introduced defects are more

effective scattering centers at lower temperatures.
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Carrier concentration versus temperature for Si be-
fore and after laser damage (The sample was radiated
at 0.96 x 104 watts/cm2. The original carrier con-
centration was ~1015 at room temperature.)
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Figure 4-4. Carrier concentration versus temperature for Ge
before and after laser damage (Other parameters
are same as in Figure 4-2.)
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Figure 4-5.

A magnified view of Figure 4-3 to show the sig-
nificant carrier removal due to laser damage
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(d)

(e)

3. THEORETICAL EXPLANATION OF DAMAGE THRESHOLDS [2]
A systematic analysis of different damage mechanisms given in

Chapter 2 shows the following.

All band to band transitions are energetically forbidden,

because the photon energy for CO2 laser is only 0.117 eV,
which is much smaller than any of the band gaps involved.
Transitions to surface states are possible, however.

Simple Joule heating is insufficient to raise the tem-

perature of the sample to melting point in a time of about
0.1 second for which the samples were irradiated.
Multiphoton absorption cross sections are too low [3]

to cause any significant absorption.

Damage to doped and undoped samples cccurs at the same
power levels. This rules out the occurrence of damage
due to free carriers. Free carrier absorption, however,
can be a cause of raising the electron temperature in the
early stages of damage process.

Lucky electron theory of avalanche cannot apply to high
mobility semiconductors, because of the fact that

wE, => 1. This inequality rules out the possibility of

a hard momentum-reversing collision during half period

of the laser, essential for the buildup of an electron
avalanche. Shatas et al. [4] have also ruled out elec-
tron avalanche as a probable damage mechanism in GaAs

and NaCl crystals.

This leaves one with plasma instabilities. Upon examination
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of several different types of plasma instabilities, it was deter-
mined that the theory of parametric instability of DuBois and Gold-
man [5], when combined with the theory of anomalous absorption of
Dawson and Oberman [6], explains the observed damage thresholds
satisfactorily. ’

This kind of instability can be excited in a system if the
energy is fed into the solid-state plasma at a rate faster than the
system can dissipate it. The intense laser beam of frequency w
(2.83 x 1013 Hz in this case) interacts nonlinearly with the elec-
tron plasma, that has a resonance frequency given by

wp = (wz + 3k25e2)li
(where We is the Langmuir frequency of the electron plasma and S,
is the thermal velocity of the electron) and pumps the ion plasma
at the beat frequency (wo - mR). If W, and Wp are very nearly
equal, then (mo - wR) is small and is characteristic of the ion
acoustic frequency. Similarly, the laser beam can interact with
the ion acoustic wave and pump the electron plasma. If this type
of instability has a positive growth rate, then it can cause anom-
alous absorption and heating of the sample with subsequent lattice
damage.

The calculation of the damage thresholds is based on finding
the nonlinear susceptibility in terms of the laser beam parameters

(Eo, wo, ko) and electron plasma parameters (n, T, me).

It was shown in Chapter 2 (see Equation 2.77)
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NL > >
- b (4.1)
EL (k ,w) eL(k,w)

2

2 ->
(k /kD) e_(k ,u:-wo)

L

for k << kD' A2 < 1 where eL(f,w) is the linear longitudinal dielec-
: NL > : <
tric constant of the electron plasma and €L (k,w) is the nonlinear

dielectric constant under the action of the intense laser beam. Here

SE 4 Io
(w ) nck_T e
o B

in which wp is the usual Langmuir frequency of the plasma and Wy is

=
[}
N

the frequency of the incident laser field and Io its density. n
is the electron concentration of the plasma. Also, kD is the in-
verse of the Debye-Huckel shielding length.

The nonlinear dielectric constant has two parts. The real
part, when equated to zero, would give the resonance frequency of
the plasma and is always very close to W The imaginary part

. ) NL
gives the damping rate (Y /wp)

4
NL
b NL >
W 3 3 (k'wL) 1
2
Y k
L 2 D -1
e R == -
wp Im(k2 EL (k,mL wo)) ; (4.3)

where

<

—
W
P

Im (EL(K,wL)) = (4.4)

and is ordinary Landau damping. In the case of a solid state plasma,

it can be approximated as
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where i is the collision time of the carriers with the lattice

phonons.

k = w w

-1 i )
| 2 € (Q,m -w ) can be estimated by = i
k2] gar YAy

where Yi/wi and Yl/wl give the damping rates for acoustic and

optical phonons, respectively [7].

Hence

This damping rate is negative (i.e., we have the growth of

instability) if

w. w Y

9
AZ( l) <‘ﬂ;)) .
Yl 1.,; wp

or writing in terms of power threshold

5

)

w N4 LY Y ¥
Lo = Ly AR X
Pth = 4nLkBT((L ) (‘u ) ( m.) ((D ) (4.6)
p p i g

Now Wy - np and for this to be true the plasma concentration
should be of the order of 108 to 1019 cm=3. But the starting
carrier concentrations here are much less than this. Therefore,
new excitation mechanism 1s proposed which would alleviate enough
electrons from the valence band to the conduction band via a con-
tinuous distribution of surface states within the band gap. This
will be disucssed at the end of this section.

In a solid statc plasma Drude absorption causes the electron
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